The Smaug RNA-Binding Protein Is Essential for microRNA Synthesis During the Drosophila Maternal-to-Zygotic Transition
نویسندگان
چکیده
Metazoan embryos undergo a maternal-to-zygotic transition (MZT) during which maternal gene products are eliminated and the zygotic genome becomes transcriptionally active. During this process RNA-binding proteins (RBPs) and the microRNA-induced silencing complex (miRISC) target maternal mRNAs for degradation. In Drosophila, the Smaug (SMG), Brain tumor (BRAT) and Pumilio (PUM) RBPs bind to and direct the degradation of largely distinct subsets of maternal mRNAs. SMG has also been shown to be required for zygotic synthesis of mRNAs and several members of the miR-309 family of microRNAs (miRNAs) during the MZT. Here we have carried out global analysis of small RNAs both in wild type and in smg mutants. Our results show that 85% all miRNA species encoded by the genome are present during the MZT. Whereas loss of SMG has no detectable effect on Piwi-interacting RNAs (piRNAs) or small interfering RNAs (siRNAs), zygotic production of more than 70 species of miRNAs fails or is delayed in smg mutants. SMG is also required for the synthesis and stability of a key miRISC component, Argonaute 1 (AGO1), but plays no role in accumulation of the Argonaute-family proteins associated with piRNAs or siRNAs. In smg mutants, maternal mRNAs that are predicted targets of the SMG-dependent zygotic miRNAs fail to be cleared. BRAT and PUM share target mRNAs with these miRNAs but not with SMG itself. We hypothesize that SMG controls the MZT, not only through direct targeting of a subset of maternal mRNAs for degradation but, indirectly, through production and function of miRNAs and miRISC, which act together with BRAT and/or PUM to control clearance of a distinct subset of maternal mRNAs.
منابع مشابه
An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition.
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophil...
متن کاملTemporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila
During oogenesis, female animals load their eggs with messenger RNAs (mRNAs) that will be translated to produce new proteins in the developing embryo. Some of these maternally provided mRNAs are stable and continue to contribute to development long after the onset of transcription of the embryonic (zygotic) genome. However, a subset of maternal mRNAs are degraded during the transition from pure...
متن کاملmicroRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.
Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. T...
متن کاملSelection Against Maternal microRNA Target Sites in Maternal Transcripts
In animals, before the zygotic genome is expressed, the egg already contains gene products deposited by the mother. These maternal products are crucial during the initial steps of development. In Drosophila melanogaster, a large number of maternal products are found in the oocyte, some of which are indispensable. Many of these products are RNA molecules, such as gene transcripts and ribosomal R...
متن کاملSmaug Recruits the CCR4/POP2/NOT Deadenylase Complex to Trigger Maternal Transcript Localization in the Early Drosophila Embryo
BACKGROUND Asymmetric localization of mRNAs within cells promotes precise spatio-temporal control of protein synthesis. Although cytoskeletal transport-based localization during Drosophila oogenesis is well characterized, little is known about the mechanisms that operate to localize maternal RNAs in the early embryo. One such mechanism-termed "degradation/protection"-acts on maternal Hsp83 tran...
متن کامل